Analog perceptrons: On additive representation of functions
نویسندگان
چکیده
منابع مشابه
On the monotonicity properties of additive representation functions, II
For a set A of positive integers and any positive integer n, let R1(A, n), R2(A, n) and R3(A, n) denote the number of solutions of a + a = n with the additional restriction a, a ∈ A; a, a ∈ A, a < a and a, a ∈ A, a ≤ a respectively. In this paper, we specially focus on the monotonicity of R3(A, n). Moreover, we show that there does not exist any set A ⊂ N such that R2(A, n) or R3(A, n) is event...
متن کاملstudy of hash functions based on chaotic maps
توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...
Representation functions of additive bases for abelian semigroups
A subset of an abelian semigroup is called an asymptotic basis for the semigroup if every element of the semigroup with at most finitely many exceptions can be represented as the sum of two distinct elements of the basis. The representation function of the basis counts the number of representations of an element of the semigroup as the sum of two distinct elements of the basis. Suppose there is...
متن کاملThe inverse problem for representation functions of additive bases
Let A be a set of integers. For every integer n, let rA,2(n) denote the number of representations of n in the form n = a1 + a2, where a1, a2 ∈ A and a1 ≤ a2. The function rA,2 : Z → N0 ∪ {∞} is the representation function of order 2 for A. The set A is called an asymptotic basis of order 2 if r A,2(0) is finite, that is, if every integer with at most a finite number of exceptions can be represe...
متن کاملAdditive Functions on Shifted Primes
Best possible bounds are obtained for the concentration function of an additive arithmetic function on sequences of shifted primes. A real-valued function / defined on the positive integers is additive if it satisfies f(rs) = f(r) + f(s) whenever r and s are coprime. Such functions are determined by their values on the prime-powers. For additive arithmetic function /, let Q denote the frequency...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information and Control
سال: 1971
ISSN: 0019-9958
DOI: 10.1016/s0019-9958(71)80006-2